Understandable Proofs of Unsatisfiability

Marijn J.H. Heule

Carnegie Mellon University

VardiFest at FLoC'22

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

 $3^{2} + 4^{2} = 5^{2} \quad 6^{2} + 8^{2} = 10^{2} \quad 5^{2} + 12^{2} = 13^{2} \quad 9^{2} + 12^{2} = 15^{2}$ $8^{2} + 15^{2} = 17^{2} \quad 12^{2} + 16^{2} = 20^{2} \quad 15^{2} + 20^{2} = 25^{2} \quad 7^{2} + 24^{2} = 25^{2}$ $10^{2} + 24^{2} = 26^{2} \quad 20^{2} + 21^{2} = 29^{2} \quad 18^{2} + 24^{2} = 30^{2} \quad 16^{2} + 30^{2} = 34^{2}$ $21^{2} + 28^{2} = 35^{2} \quad 12^{2} + 35^{2} = 37^{2} \quad 15^{2} + 36^{2} = 39^{2} \quad 24^{2} + 32^{2} = 40^{2}$

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

Best lower bound: a bi-coloring of [1,7664] s.t. there is no monochromatic Pythagorean Triple [Cooper & Overstreet 2015]. Myers conjectures that the answer is No [PhD thesis, 2015].

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

A bi-coloring of [1, n] is encoded using Boolean variables x_i with $i \in \{1, 2, ..., n\}$ such that $x_i = 1$ (= 0) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \vee x_b \vee x_c)$ and $(\overline{x}_a \vee \overline{x}_b \vee \overline{x}_c)$.

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

A bi-coloring of [1, n] is encoded using Boolean variables x_i with $i \in \{1, 2, ..., n\}$ such that $x_i = 1$ (= 0) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \vee x_b \vee x_c)$ and $(\overline{x}_a \vee \overline{x}_b \vee \overline{x}_c)$.

Theorem ([Heule, Kullmann, and Marek (2016)]) [1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for [1,7825].

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

A bi-coloring of [1, n] is encoded using Boolean variables x_i with $i \in \{1, 2, ..., n\}$ such that $x_i = 1$ (= 0) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \vee x_b \vee x_c)$ and $(\overline{x}_a \vee \overline{x}_b \vee \overline{x}_c)$.

Theorem ([Heule, Kullmann, and Marek (2016)]) [1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for [1,7825].

4 CPU years computation, but 2 days on cluster (800 cores)

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^2 + b^2 = c^2$?

A bi-coloring of [1, n] is encoded using Boolean variables x_i with $i \in \{1, 2, ..., n\}$ such that $x_i = 1$ (= 0) means that i is colored red (blue). For each Pythagorean Triple $a^2 + b^2 = c^2$, two clauses are added: $(x_a \vee x_b \vee x_c)$ and $(\overline{x}_a \vee \overline{x}_b \vee \overline{x}_c)$.

Theorem ([Heule, Kullmann, and Marek (2016)]) [1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for [1,7825].

4 CPU years computation, but 2 days on cluster (800 cores) 200 terabytes proof, but validated with verified checker

VardiFest at FLoC'22

Media: "The Largest Math Proof Ever"

engadget	engad	lget
----------	-------	------

Collqteral May 27, 2016 +2 200 Terabytes. Thats about 400 PS4s.

VardiFest at FLoC'22

Academic rigour, journalistic flair

Moshe's Question

"Will the size of the proof decrease if you enlarge the interval?"

Moshe's Question

"Will the size of the proof decrease if you enlarge the interval?"

Transition point: n = 7825

▶ Initial: #cls = 18944, #var = 6495, $\rho = 2.92$

• Preprocessing: $#cls = 14\,672$, $#var = 3\,746$, $\rho = 3.92$

Proof size: 200 terabyte

Moshe's Question

"Will the size of the proof decrease if you enlarge the interval?"

Transition point: n = 7825

▶ Initial: #cls = 18944, #var = 6495, $\rho = 2.92$

• Preprocessing: $#cls = 14\,672$, $#var = 3\,746$, $\rho = 3.92$

Proof size: 200 terabyte

Way beyond transition point: $n = 1\,000\,000$

• Initial: $#cls = 3\,961\,284$, $#var = 866\,075$, $\rho = 4.57$

• Preprocessing: $#cls = 635\,664$, $#var = 64\,128$, $\rho = 9.91$

Proof size: 1 terabyte

VardiFest at FLoC'22

Chromatic Number of the Plane

The Hadwiger-Nelson problem:

How many colors are required to color the plane such that each pair of points that are exactly 1 apart are colored differently?

The Moser Spindle graph shows the lower bound of 4
A coloring of the plane showing the upper bound of 7
VardiFest at FLoC'22

Small 5-Chromatic Unit Distance Graph

Use similar techniques:

- create a large, dense graph with chromatic number 5
- construct a small proof of unsatisfiability and extract core

